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NONDESTRUCTIVE ULTRASONIC C H A R A C T E R I Z A T I O N  
OF TWO-PHASE MATERIALS 

F ina l  Report 
Grant NCC1-88 

‘2 
i 

ABSTRACT 

This f ina l  r epor t  desc r ibes  t h e  accomplishments obtained under 

Grant “1-88, t o  develop u l t r a son ic  methods f o r  t h e  nondes t ruc t ive  

cha rac t e r i za t ion  of mechanical p rope r t i e s  of two-phase engineering 

materials. The primary goa l  of the study is t o  es tabl ish r e l a t i o n s h i p s  

between the  non l inea r i ty  parameter and the  percentage of  s o l i d  s o l u t i o n  

phase i n  two-phase systems such as heat treatable aluminum a l loys .  The 

acous toe la s t i c  cons tan t  is also to be measured on these  a l l o y s  f o r  

comparison and confirmation. A major advantage, however, o f  t h e  

non l inea r i ty  parameter over t h a t  of the a c o u s t o e l a s t i c  cons tan t  is t h a t  

it may be determined without t he  appl ica t ion  o f  stress on t h e  material, 

which makes t h e  method more appl icable  f o r  in -serv ice  nondes t ruc t ive  

cha rac t e r i za t ion .  

The r e s u l t s  obtained on the heat treatable 7075 and the work 

hardenable 5086 and 5456 aluminum a l l o y s  show t h a t  both t h e  

a c o u s t o e l a s t i c  cons tan t  and t h e  acous t ic  non l inea r i ty  parameter change 

considerably wi th  the volume f r a c t i o n  of second phase p r e c i p i t a t e s  i n  

these  aluminum a l loys .  The nonl inear i ty  parameter, however, is found t o  

be more s e n s i t i v e  t o  changes i n  the second phase than  t h e  a c o u s t o e l a s t i c  

cons tan t  . The r e s u l t s  a l s o  show t h a t  t hese  two parameters are 

i n s e n s i t i v e  t o  changes i n  p a r t i c l e  sizes of t h e  second phase. 

A mathematical model has  a l s o  been developed to  relate t h e  

e f f e c t i v e  acous t i c  non l inea r i ty  paAmeter t o  volume f r a c t i o n  of  second 
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phase p r e c i p i t a t e s  i n  an a l loy .  Although t h e  r e l a t i o n s h i p  is  i n  genera l  

nonl inear ,  t h e  equation is approximated t o  wi th in  experimental  e r r o r  by 

a l i n e a r  expression fo r  volume f r ac t ions  up to  approximately 10 percent.  

The resu l t s  are i n  agreement w i t h  t h e  experimental  measurements obtained 

on the  aluminum a l l o y  7075. 



INTRODUCTION 

S ince  most mechanical propert ies  are c h a r a c t e r i s t i c s  of t h e  b u l k  

of t he  s o l i d ,  u l t r a son ic  methods seem t o  o f f e r  t he  best promising 

techniques f o r  these measurements. The majori ty  of cu r ren t  e f f o r t s  i n  

nondestruct ive materials charac te r iza t ion  are directed towards 

measurements of u l t r a son ic  ve loc i ty  1-3 and/or a t t e n ~ a t i o n ~ ’ ~ .  Both 

measurements, however, s u f f e r  from severe d i f f i c u l t i e s  which l i m i t  t h e i r  

a p p l i c a t i o n s  . Only i n  the case of ideal s o l i d s  such as s i n g l e  

c r y s t a l s ,  may ve loc i ty  and a t tenuat ion  be related t o  mechanical 

p r o p e r t i e s  . Fur ther ,  these measurements w i l l  be successfu l  i n  t h e  

’ 6  
b 

7 

l abo ra to ry  environment and no t  i n  a f i e l d  environment. At ten t ion  is 

the re fo re  directed towards measurements o ther  than those of u l t r a s o n i c  

v e l o c i t y  a n d - a t t e n u a t i o n  coe f f i c i en t  t o  be used f o r  t h e  nondestruct ive 

cha rac t e r i za t ion  of mechanical proper t ies  and res idua l  s t r e s s e s .  Two 

parameters, namely t h e  stress dependence of u l t r a s o n i c  v e l o c i t y  and the 

non l inea r i ty  parameter of second harmonic generat ion,  are bel ieved to  

offer t h e  best promise for these measurements. The fol lowing g ives  a 

brief review of these two parameters. 

STRESS DEPENDENCE OF ULTRASONIC VELOCITY 

Calcula t ions  have shown that changes i n  u l t r a s o n i c  v e l o c i t i e s  are 

l i n e a r  func t ions  of appl ied stress where the  s lope  of t h i s  l i n e a r  

r e l a t i o n s h i p  provides a measure f o r  th i rd-order  elastic cons t an t s  . 
Unknown stresses can be determined when both the ve loc i ty  i n  t h e  absence 

of stress as well as values  of third-order elastic cons tan ts  are known 

independently. The measured veloci ty  i n  engineering materials, however, 

s t rong ly  depends on micros t ruc tura l  f ea tu re s  which makes it necessary t o  

8 



- 4 -  

develop a c a l i b r a t i o n  between veloci ty  and s t r e s s  f o r  each mater ia l  i n  

order  f o r  t h e  method t o  be used i n  the  determinat ion of unknown 

stresses. I n  addi t ion ,  development of preferred o r i e n t a t i o n s  ( t e x t u r e )  

during deformation o r  f a t igue ,  severely modify t h e  th i rd-order  e l a s t i c -  

cons tan ts  t o  be used f o r  t h e  ca l ib ra t ion  9 . E f f o r t s  a r e  underway a t  

present  t o  f ind  so lu t ions  f o r  these problems i n  order  t o  use ve loc i ty  

measurements to  determine r e s idua l  stresses 10 , l l  

On the  other hand, recent  i nves t iga t ions  on p l a i n  carbon steels 

have shown t h a t  acous toe la s t i c  constants  depend on the  carbon content  i n  
b 

these s t e e l s  ’*’ 13. The r e s u l t s  show a l i n e a r  r e l a t i o n s h i p  between the  

acous to-e las t ic  constant  and the  nominal precentage of f e r r i t e  phase i n  

these  s t e e l s .  The results also indicate tha t  t h e  add i t ion  of heavy 

a l loy ing  elements t o  t h e  steel does no t  change t h e  value of t he  

acous toe la s t i c  constant  as long as the amount of ferr i te  phase remains 

the same. T h i s  behavior i n d i c a t e s  a s t rong  r e l a t i o n s h i p  between t h e  

v a r i a t i o n s  of u l t r a son ic  ve loc i ty  with stress and the amount of solid- 

so lu t ion  phase i n  t h e  a l loy .  If t h i s  behavior p r e v a i l s  i n  o the r  types 

of steels,  i t  would then be possible  t o  use the acous toe la s t i c  constant  

t o  measure the percentage of ferr i te  phase i n  steels, which con t ro l  some 

of t h e  mechanical p rope r t i e s  such as s t r eng th ,  hardness  and d u c t i l i t y .  

This  behavior has also been observed i n  fou r  aluminum a l l o y s  

containing a wide va r i e ty  of  s t rengthening a l l o y i n g  elements . The 

acous toe la s t i c  cons tan ts  are measured on specimens made of the  four 

aluminum a l l o y s  6061-T4, 6061-T6, 3003-T251 and 2024-T351, and t h e  data 

shows a l i n e a r  dependence between acous toe la s t i c  cons tan t  and t h e  

percentage of so l id-so lu t ion  p h a s e . i n  t h e  a l loy .  T h i s  dependence is  

14 



similar t o  tha t  observed i n  s t e e l  and confirms the  conclusion drawn 

using the steel  data .  

It has t o  be r ea l i zed ,  of course, t h a t  t he  acous toe la s t i c  cons tan t  

may depend on o the r  va r i ab le s  such as micros t ruc ture  and work hardening, 

and the  r e s u l t s  obtained a r e  l imited t o  specimens of the a l l o y s  

inves t iga ted .  Nevertheless,  the  results i n d i c a t e  a s t rong  dependence of 

acous toe la s t i c  cons tan t  on the amount of ferr i te  phase i n  t he  case of 

steels and the amount of t h e  so l id  s o l u t i o n  phase i n  the case of 

aluminum. The study is c e r t a i n l y  a s t e p  forward towards t h e  p o s s i b i l i t y  
'I 

of us ing  t h i s  quant i ty  in materials cha rac t e r i za t ion .  I n  both a l loy ing  

series , the  presence of t he  so l id-so lu t ion  phase s t rong ly  inf luences  

mechanical proper t ies .  

ACOUSTIC NONLINEARITY PARAMETER 

An a l t e r n a t i v e  method t o  the un iax ia l  stress measurements t o  

determine the anharmonic behavior of a so l id  is t h e  measurement of 

harmonic d i s t o r t i o n  of an i n i t i a l l y  s inuso ida l  u l t r a s o n i c  wave . 
A major advantage of t h i s  method is that the non l inea r i ty  parameter B 

which describes the anharmonic behavior of the s o l i d  may be determined 

without the app l i ca t ion  of stress which makes the  method extremely 

practical as a nondestruct ive evaluat ion technique. The method also can 

be r e a d i l y  adopted for measurements a t  temperatures o t h e r  than t h a t  of 

room temperature. I n  t h i s  method, one e x c i t e s  a f i n i t e  amplitude of 

l ong i tud ina l  u l t r a son ic  wave which propagates through t h e  specimen. By 

measuring the fundamental amplitude and t h e  generated second harmonic 

amplitude, one can determine nonl inear i ty  parameter which cons t a ins  a 

l i n e a r  combination of the second- and the  third-order  e l a s t i c  cons tan ts .  

15,16 , 17 
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T h i s  can experimentally be obtained from the  measurements of t h e  

abso lu te  values  of t h e  amplitudes of the fundamental and t h e  generated 

second harmonic of an i n i t i a l l y  s inusoidal  longi tudina l  wave. 

For a cubic  c r y s t a l  s t r u c t u r e ,  t h e  non l inea r i ty  parameter B is t h e  

negat ive  of t he  ra t io  of t h e  nonlinear term t o  the  l i n e a r  term i n  t h e  

nonl inear  wave equation for  f i n i t e  ampli tude long i tud ina l  waves 

propagation along a p r inc ipa l  d i r ec t ion  of t he  medium. For pure mode 

long i tud ina l  sound waves propagating along a p r inc ipa l  a x i s ,  the  wave 

equat ion can be wr i t t en  i n  t h e  form, 
b 

where K 2  and K are t h e  l i n e a r  combinations of the second- and the  3 
third-order elastic constants .  

Considering an i n i t i a l l y  s inusoida l  d i s t r i b u t i o n  a t  a = 0, the 

s o l u t i o n  of eq. (1 )  is of t he  form, 

u = Alsin(ka - w t )  + (A,k 2 2  a/8) ~ c o s 2 ( k a  - w t )  + ... 

where a is the  propagation dis tance,  k = 2dX is t h e  propagation 

cons tan t ,  and A is t h e  amplitude of t h e  fundamental wave. The 

amplitude of the generated second harmonic is then given by, 
1 

A2 = (Alk 2 2  a/8)f3 ( 3 )  
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where 

B =  -(3K2 + K )/K2 3 

and also can be written in terms of the measured quantities as 

= 8(A2/A:) ( l/k2a) 

( 4 )  

(5) 

The nonlinearity parameter f3 can ,hen be experimentally determined 'Y 

measuring the absolute values of the amplitudes of the fundamental and 

the generated second harmonic wave signals A The 

development of a capacitive detector and its calibration18 permit the 

absolute determination of the amplitude of finite sinusoidal ultrasonic 

waves. 

and A2,  respectively. 1 

PROGRAM OBJECTIVES 

The primary goal of this research program is to establish 

relationships between the acoustic nonlinearity parameter of second- 

harmonic generation and the percentage of solid solution phase in a two- 

phase alloy system such as those of aluminum. Similar relationships are 

also to be established between acoustoelastic constants and percentage 

of second phase precipitates in the same alloy system. These alloys are 

available commercially and their mechanical properties are well 

documented. The acoustoelastic constants are also be measured on these 

alloys for comparison and confirmation. Specifically, the objectives 

of the study are: 
. 
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1. To measure t h e  non l inea r i ty  parameter i n  aluminum a l l o y s  of t h e  

series 5 X X X  and 7XXX. The first  series a re  non-heat treatable and 

the i r  s t r e n g t h  can be increased by s t r a i n  o r  work hardening. The 

7XXX ser ies  is age-hardenable, forgeable  a l l o y s  used f o r  e leva ted-  

temperature use. The main a l loy ing  element i n  t h i s  series is Zn i n  

about  5-7% 12% and 1-3% of each Mg and Cu. 

2. Ul t rasonic  ve loc i ty  vs. stress on t h e  same specimens t o  be used i n  

t he  determinat ion of the  second-harmonic gene ra t ion  n o n l i n e a r i t y  

parameter. The experiments a re  to  be performed when t h e  specimens 
b 

are subjec ted  to  stress applied i n  a d i r e c t i o n  perpendicular  t o  

t h a t  of u l t r a s o n i c  propagation. 

EXPERIMENTAL 

The specimens used i n  t h i s  study were made of t h e  h e a t  treatable 

aluminum a l l o y  7075 and the  work hardenable a l l o y s  5086-H111 and 5456- 

H 1 1 1 .  The nominal compositions of these a l l o y s  are shown i n  Table 1. 

Four specimens of A 1  7075 and one of each A1-5456 and A1-5086 were 

inves t iga t ed  . 
The work hardenable a l l o y s  were tested i n  the  as  received condi t ion  

without  any f u r t h e r  h e a t  treatment.  The A1-7075 specimens were 

subjec ted  to  d i f f e r e n t  h e a t  t rea tments  i n  o rde r  t o  achieve  varying 

amounts of second phase i n  them. The specimens were first s o l u t i o n  

treated a t  4650 C for a period of 2 1/2 hours. Specimen b l  was then  

quenched a t  00 C and allowed t o  warm slowly t o  room temperature. 

Specimen 82 was quenched i n  water a t  25O C. Specimen #3 was quenched i n  

bo i l ing  water and was then transferred t o  a furnace heated t o  looo C and 

allowed t o  cool  slowly t o  room temperature. Specimen #4 was s o l u t i o n  
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treated a t  465O C and then quenched i n  water a t  250 C. The specimen was 

then allowed t o  age a t  room temperature and the  non l inea r i ty  parameter, 

B, was mesured as a funct ion of aging time. Speciment #4 was f u r t h e r  

aged a t  1200 C f o r  var ious periods of time and the  acous toe la s t i c  

cons tan t  was measured a t  each time. 

The specimens for  measuring t h e  non l inea r i ty  parameter were 

c y l i n d r i c a l  i n  shape with a diameter of approximately 2.5 cm and a 

length  of about 5 cm. After hea t  t reatments  the  opposi te  f aces  of t he  

specimens were made parallel t o  better than 5 pn. The end faces were 
b 

then pol i shed  and hand lapped u n t i l  they became o p t i c a l l y  f l a t  and 

sc ra t ch  free t o  be s u i t a b l e  for nonl inear i ty  measurements. 

Table 1. Nominal Composition of Aluminum Alloys 

Alloy S i  Cu Zn Mn Mg C r  A 1  

5086 (W 1 - - - 0.45 4.0 0.15 rem 

5456 (W 1 - - - 0.8 5.1 0.12 rem 

7075(H) - 1.6 5.6 - 2.5 0.23 rem 

( H )  Heat treatable 

(W) Work hardenable 

The method used i n  the determination of the non l inea r i ty  parameter, 

17 8 ,  is described i n  detail  elsewhere . It is ca lcu la t ed  from t h e  r a t i o  

of the amplitude of t he  harmonic s igna l ,  A2, t o  the square of t h e  

fundamental s i g n a l ,  A t ,  and using the r e l a t i o n s h i p  

B =  8A2 

A12 k2 a 
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where k is the  wave vec to r  and a is  the  length  of the  specimen. Af te r  

the  n o n l i n e a r i t y  parameter was measured, two p a r a l l e l  f a c e s  were 

machined on t h e  specimens t o  form a r ec t angu la r  c r o s s  s e c t i o n  of 

approximately 1.7 t o  2.5 cm. Each s i d e  was machined f l a t  and oppos i te  

sides were made p a r a l l e l  t o  within 0.025 mm. The a c o u s t o e l a s t i c  

cons t an t  is determined by measuring the  changes i n  the n a t u r a l  sound 

v e l o c i t y  when the specimen is subjec ted  t o  an e x t e r n a l  compressive 

stress. 

is used f o r  measuring t h e  n a t u r a l  sound ve loc i ty .  A 10 MHz pulsed,  

The pulse-echo ove r l ap  system, descr ibed i n  de ta i l  elsewhere 19 , 
b 

l o n g i t u d i n a l  waves were used so tha t  a direct  comparison can be made 

with t h e  harmonic genera t ion  results. 

I n  o rde r  t o  determine the  volume f r a c t i o n  of t h e  second phase 

p r e c i p i t a t e s ,  t h e  specimens were polished us ing  A l u m i n a  powder and 

etched wi th  NaOH so lu t ion .  Micrographs were taken and t h e  area of t h e  

second phase was determined. The volume perecentage of second phase 

present  i n  the specimen was then ca lcu la ted .  

RESUSLTS AND DISCUSSIONS 

Acous toe las t ic  Constant 

The AEC of t he  work hardenable aluminum a l l o y s ,  A1-5086 and A l -  

5456, and t h e  heat treatable aluminum a l l o y  A1-7075 specimens are 

p l o t t e d  a g a i n s t  t he  volume f r a c t i o n  of the second phase con ten t  i n  f i g .  

1. Also included i n  the f i g u r e  are the values  of the AEC f o r  the a l l o y s  

A1-2024, A1-6061, and A1-7075 i n  the as received cond i t ion  repor ted  by 

Li e t  al. . From t h i s  f i g u r e ,  one can see tha t  the work hardenable  

a l l o y s ,  A15086 and A1-5456, do n o t ,  show any s i g n i f i c a n t  changes i n  t h e  

AEC due t o  changes i n  the  volume f r a c t i o n  of t h e  second phase. The 

20 
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change i n  the  second phase con ten t  i n  t he  two a l l o y s  is 71% whi le  t h e  

AEC changes by only 3.4%. These r e s u l t s  do not  agree w i t h  t h e  

measurements of Schneider e t  a1 21 who r e p o r t  t h a t  t he  AECs of t h e  work 

hardenable  aluminum a l l o y s  5052, 3003 and 1100 i nc rease  l i n e a r l y  w i t h  

t h e  i n c r e a s e  i n  t he  volume f r a c t i o n  of second phase up t o  about 8%.  

The AECs of the heat treatable a l l o y s ,  A1-2024, A1-6061 and A1-7075 

as rece ived ,  repor ted  by L i  e t  a120 are found t o  inc rease  wi th  t he  

inc reas ing  amounts of second phase. A s  t h e  second phase conten t  is  

inc resed  f u r t h e r  t he  AECs are found t o  be i n s e n s i t i v e  t o  changes i n  t he  
b 

second phase conten t .  Li e t  a1 r e p o r t  a change of 59% i n  the  AECs for a 

change i n  second phase from 0.3% t o  2.9%. The AEC of t h e  A1-7075 a l l o y  

i n c r e a s e s  by 9% when subjec ted  to heat t rea tments  which r e s u l t  i n  

increased  amounts of second phase. The second phase content  is 

increased  from 2.9% t o  6.3% for speciment #I, 7.7% f o r  specimen #2 and 

9.7% for  specimen #3. The AEC of the  three specimens, however, remains 

unchanged wi th in  t h e  experimental  e r r o r  estimated f o r  t h e  determinat ion 

of t h i s  quant i ty .  

Salama et  a122 predicted a linear r e l a t i o n s h i p  between the change 

i n  t h e  AEC and the volume f r a c t i o n  of second phase. I n  h i s  c a l c u l a t i n s ,  

he considered d i l u t e  s o l u t i o n s  of rigid particles i n  a matr ix  and found 

tha t  the change i n  t h e  AEC is a l i n e a r  func t ion  of t h e  concen t r a t ion  of 

second phase which agree wi th  the experimental  behavior of AEC a t  low 

concent ra t ions .  As t h e  concent ra t ion  i n c r e a s e s  the d i l u t e  s o l u t i o n  

approximation becomes i n v a l i d  and the  AEC is no longer  s e n s i t i v e  t o  

changes i n  the volume f r a c t i o n  of the  second phase a t  higher  volume 

f r a c t i o n s  ( f ig .  1) .  
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The resul ts  obtained on specimen #4 for t h e  AEC a s  a func t ion  of  

i 

aging time a r e  p l o t t e d  i n  f ig.  2 which shows t h a t  t h e  AEC does not  

change s i g n i f i c a n t l y  w i t h  aging time, though t h e  average s i z e  of  t h e  

p r e c i p i t a t e  p a r t i c l e a l s  is expected t o  change. It appears t o  i n d i c a t e  

t h a t  t h e  AEC is not  s i g n i f i c a n t l y  influenced by changes i n  t h e  s ize  and 

d i s t r i b u t i o n  of t h e  second phase p a r t i c l e s .  

Nonlinearity Parameter 

Fig :  3 shows t h e  non l inea r i ty  parameter as a func t ion  of  t h e  volume 

f r a c t i o n  of the  second phase i n  t h e  aluminum a l l o y s  used i n  t h i s  

i nves t iga t ion .  Also included i n  t h e  f i g u r e  are t h e  r e s u l t s  of  L i  e t  

a120 obtained on the aluminum- a l l o y s  2024, 6061 and 7075 i n  the  as  

received condition. From t h i s  data it is seen t h a t  t h e  non l ine r i ty  

parameter increases  wi th  t h e  increase  of  t he  volume f r a c t i o n  of t h e  

second phase and t h a t  there  is a l i n e a r  r e l a t i n s h i p  between the  

non l inea r i ty  parameter and t h e  volume f r ac t ion .  The non l inea r i ty  

parameter changes from 5.1 t o  13.8% for  a change i n  t h e  volume f r a c t i o n  

from 0.3 t o  9.7%. The aluminum a l l o y s  2024, 6061 and 7075 have 

d i f f e r e n t  a l loy ing  elements and form d i f f e r e n t  p r e c i p i t a t e s .  The 

effects of  these p r e c i p i t a t e s  on the  non l inea r i ty  parameter, however, 

are t h e  same 

d i f f e r e n c e s  i n  

The work 

behavior where 

f o r  t h e  same volume f r a c t i o n  i n s p i t e  o f  t he  v a s t  

t h e i r  chemical compositions and p rope r t i e s .  

hardenable a l l o y s  A1-5086 and A1-5456 show a d i f f e r e n t  

the non l inea r i ty  parameter decreases wi th  t he  inc reas ing  
m. LI concent ra t ion  of second phase p r e c i p i t a t e s .  Schneider e t  a l .  measured 

t h e  AEC of t he  work hardenable aluminum a l l o y s  A1-1100, A1-3003 and A l -  

5052 and found t h a t  it increased, w i t h  the inc rease  i n  t h e  volume 

f r a c t i o n  of  second phase. The AEC and t h e  non l inea r i ty  parameter are 
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both func t ions  of t h e  second and t h i r d  order  e l a s t i c  cons tan ts ,  however, 

one can see  t h a t  t h e y  a r e  affected d i f f e r e n t l y  by the  presence of second 

phase. Fig. 4 shows the  nonl inear i ty  parameter as a func t ion  of aging 

time. Again no s i g n i f i c a n t  change i n  is  observed on aging up t o  237 

hours. T h i s  shows t h a t  B is insens i t i ve  t o  changes i n  t he  p r e c i p i t a t e  

s i z e  and depends only on t h e  voilume f r a c t i o n  of second phase. 

I n  order  t o  understand t h e  behavior of t he  non l inea r i ty  parameter 

shown i n  Figs .  3 and 4, a mathematical model has r ecen t ly  been developed 

by C a n t r e l l  e t  al .  t o  relate t h i s  parameter t o  t he  to ta l  volume f r a c t i o n  
b 

of second phase p r e c i p i t a t e s .  A de ta i led  desc r ip t ion  of t h i s  model and 

t h e  mathematical de r iva t ions  a r e  shown i n  t h e  paper included i n  Appendix 

A. Although t h e  developed r e l a t ionsh ip  is i n  genera l  nonl inear ,  i t  can 

be approximated t o  wi th in  experimental error by a l i n e a r  expression f o r  

volume f r a c t i o n s  up t o  approximately 10%. Th i s  r e s u l t  is  i n  agreement 

with those obtained experimental ly  and shown i n  Fig.  3. F ina l ly  i t  was 

assumed i n  the  model t h a t  t h e  number of randomly or ien ted  g r a i n s  

contained within a pathlength of t he  propagating sound wave is 

s u f f i c i e n t l y  l a r g e  t o  provide a good s ta t is t ical  smapling of quasi-  

i s o t r o p i c  behavior. The r e s u l t s  shown i n  Fig. 4 i n d i c a t e  no s i g n i f i c a n t  

v a r i a t i o n  i n  B although the average size of  t h e  p r e c i p i t a t e s  is  expected 

t o  increase ,  which supports  t h e  assumption of t h e  mathematical model. 
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ABSTBACT 

A mathematical model is presented giving the 
effective acoustic nonlinearity parameter of an 
alloy a. a function of total volume fraction of 
second phase precipitates. Although the 
relationship is in general nonlinear, the equation 
is approxjmated to vithin experimental error by a 
linear expresrion for volume fractions up to 
approximlely 10 percent. The results are in 
egreemenp with experimental measurements of 
aluminum alloy 7075 using the harmonic generation 
technique. 

I, Int roduc t ion 

h e  acoustic nonlinearity parmeter io s- 
quantitative mcarurc of intrinric anharmonicity in 
materials that is related directly to the shape of 
the interatomic .potential. Such anharmonicity iS 
responsible for a variety of important phenomena 
including harmonic generat ion, acoustic radiation 
stresses, and the stress dependence of the round 
velocity, as well as thermal expansion, the 
variation in the optical refractive index with 
temperature and pressure, and the temperature 
dependence of the elastic conatants. Recent 
studies have revealed that the magnitude of the 
nonlinearity parameters along 4 given crystalline 
direction ir highly orde ed according t o  tbe type 

with the ertabliahmunt of modal a ourtic radiation 
etreaaer in crystalline has led t o  
equations e presring the the-1 expenrion 
coefficient' and be temperature dependence of the 
elastic constants5 directly in t e r m  of the modal 
nonlinearity parameter.. 

The significant role played by tbe noalimarity 
parameters in determining tbe tbemoelastic 
properties of crystalr lead. ur now to explore the 
effect of micrortructure on the noalinaarity 
parameter.. In particular, the mechanical 
properties of u n y  ea~ineering material. ara 
derived, at laart in part, from the presence Of 
secondary phase. in the solid rolution matrix.  The 
presence of the second phase, for example, raises 
the flow streaa; and the extent of rtrrrr8tbrnins 
depend. to first order on the voltme fraction, 
size, and characterirtics of the m c d  phare 
precipitates vhich form during the mnufacturiag 
proceaa. The purpooe of this paper in t o  present a 
mathematical =del of the effective nOnline4riCy 
parameter of e quasi-isotropic rokid in term of 
the volume frection of ita second phare 

of crystalline atructure I . This fact, together 

precipitates. 
test of the model for aluminum alloy 7075 having 
volume fractions of second phase precipitates up to 
ten percent. 

We conclude with an experimental 

11. Mathematical Model 

For a wave of polarization j - 1, 2, 3 propagating 
along direction q in a crystalline solid the 
general relationship between the stress 
field T 

(a1  is the Lagrangian coordinate) may be written to 
first order in the nonlinearity as 

and the displacement gradient aP./aa 
vq 3 1  

2 

( 1 )  

where p? and uvq are linear combinations of second 

and third order elastic constants. We shall 
restrict our considerations to compressional 
( j  I) waves in quasi-isotropic solids (i. e. 
solido consisting of randomly oriented grains). 
thus drop the subrcripta and write for 
comprersional etresses 

JJ 

We 

n 

( 2 )  1 
7 - p (ap/aa) - p~ (ap/aaIL 

uhere 6 io the acoustic nonlinearity prameter. 
Solving for (ap/aa) in terms of T we obtain 

( 3  

Ye now consider the solid to consist of any numbr 
of phescr N. 
the Brain orientation. are perftrtly random (no 
texture) and that the number of ouch grains 
contained uitbin pathlength of sound is 
eufficiantly large to provide a good statiafical 
srmp1ial) (i. e.,  no statistical bias). 
extent ouch conditions are maintained the value of 
the nonlinearity permeter is expected to be 
independent of grain s ize .  

We aasume that fur a given phase i 

To the 

In order to obtain the appropriate mixing law for 3 
ve begin by defininp V, snd po to be the initial 
(unperturbed) volumc and mass density. 
re.pectively, of the solid. The locul 
transformation from the initial state co  the 
deformed state V or p ir defined through the 
Jacobian 
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We thus find in  general a non1inr.ir r t . l . i r  i o n h l i ~ p  
between the effrctive nonllnearity p d r d i u t b 1 t ~ r  I., . ~ n d  
the volume fraction f i  of individual 

2 .  of the appearance of )r In E q .  ( 1 2 ) .  It is of 
interest to point out that for liquid media the 
second-order elastic constants (Ch4 = o and 

C l l  - C12. 
Ki are liquid state compresslblllties and Eq. ( 1 2 )  
becomes identical to the results of Apfe16 for 
immiscible liquid mixtures. 

We now assume that the solid consists of any number 
of distinct second phase precipitates and that the 
relative volume fractions of constituent second 
phase precipitates are constant. Hence, the 
effective nonlinearity parameter B P and the 
effective of the second phase precipitates taken 

collectively are also  constant. 
the relative volume fractions of second phase 
precipitates must necessarily come at the expense 
of the solid solution constituents. We shall 
assume that the depletion of solid solut ion occurs 
linearly as 

pti.ises because 

In this case, - - K. in E q .  ( 1 1 )  where 
'i. . ? 

P 
The invariance of 

We consider that the volume at any time consists of 
a number N of constituent phases i such that 

N .  
v -  C V I .  (5) 

i-1 

We then write from E q e .  (4) and (5) 

1 1 i 

' 0  i "0 i 
J --E Vi I- C Ji Vo 

- L Ji fi 
i 

(6) 

1 . .  

where Ji 

fi V:/Uo is the volume fraction of phase i. 

Expanding the Jacobian in terms of the displacement 
gradient. (aui/aa.) - uij and keeping the Linear 

V1/Vi is the Jacobian for phase i and 

b 

1 - 
t e r m  (small rtrains), ye write (Einrtein 
summat ion) 

( 7 )  (13) 
- 

fi - fi - e.f 
1 P  

Substituting Eq. (7 )  into Eq. ( 6 )  we get vhere fi is the present volume fraction of solid 
solution constituent i, f P is the total-volume 
fraction of second phase precipitates, f. is the 
volume fraction of constituent i in pure'solid 
solution ( i .  e., when fp - 0 1 ,  and e; is the 
"depletion" constant foz constituent i. It is of 
interest to note that Cfi - 1 since the total 
volume fraction of pure solid solution ( f  
must be unity. 

- 01 
Hence, from Eq. (13)  we ogtain 

Ukk - I: Up'& fi. 
i 

We now consider the quasi-isotropic solid and 
a6sume that for a given pha8. i the cryrtal grain 
orientations are sufficiently rand- and of 
sufficiently large number that each phara rerponds 
individually u an irotropic structure. 
conditions, Eq. ( 6 )  may be nitten 

Under such Zfi + f rei - 1 
P 

(14) 

ap - - (aP/adi fi 
aa . 

in the notation of Bq. (2). 

where the sumo are over solid solution constituents 
only. It followa from Eq. (14) that Cei - 1 since 
the constituent volume fractions of rolld solution 
and the total volume fraction of second phase 
precipitates ( f  t 0 )  must also sum to unity. 

(9) 

P 
From Ego. (3)  and ( 9 )  we obtain we nar write gq. (11) as 

0 
-1 + - -7 - ( c  r fi)7 + ( 4  +-+ fi)72 
P 2 u2 i "i L v i  

(10) 1 I 1 - - I : - f f .  +-f 
P i P i  1 P P P 

(15) 

where we assume local equality of r t re rses  
throughout the molid. 
obtain i 

where in Eq. (15) and in a l l  following equations 
the z denote# sumation over solid solution 
constituents only. From Eqa. ( 1 3 )  and ( 1 s )  we m y  

Cqquatias like parrs of 7 

1 1 
ii=Zii~'i 

write 
(11) 

. 1'1 1 1 L - L +  f (cl - c - ei) u -  )r p p i ' i  
(16) 

and 

6. where 
I3 - UZ z + fi. 

i v i  
(12) 
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1 I -  
- 9  i. - f . .  - 
U i " i  

( 1 7 )  

i s  t h e  pure  s o l i d  s o l u t i o n  u - ' .  
Eqs. ( 1 2 ) .  (13 ) ,  and (16) we f i n d  t h a t  t h e  
e f f e c t i v e  n o n l i n e a r i t y  parameter 6 of t h e  s o l i d  in 
t e r m  of  t o t a l  volume f r a c t i o n  of second p h a s e  
p r e c i p i t a t e s  f is  given by 

S i m i l a r l y ,  from 

P 

h e r e  

(19) 

is t h e  n o n l i n e a r i t y  parameter f o r  pure  s o l i d  
s o l u t i o n .  For t y p i c a l  va lues  of t he  IJ 'B and 
6 ' s  t h e  c o e f f i c i e n t s  of t he  t e r m  c o n t a i n i n g  f p  i n  
Eq. (18 )  are es t ima ted  t o  be of order un i ty .  
Expanding Eq. (18) i n  a power rerier f o r - s m a l l  
v a l u e s  of f and keeping only t h e  l i n e a r  term we 
o b t a i n  P 

where t h e  c o n s t a n t  

Equat ion  (20) is a l i n e a r  approximat i -  to  
Eq. (18); a survey of t y p i c a l  v a l u e r  of v i  
and B i  ind ica te .  t h a t  t h e  e q u a t i o n  ehould  be 
a c c u r a t e  f o r  umst m o t e r i a l s  to w i t h i n  t h e  
expe r imen ta l  u n c e r t a i n t y  f a r  volume f r a c t i o n a  
h igh  as 10 percen t .  

IIX. Experiments 

we now c o n s i d e r  e x p e r i r n t a l  c o n f i r u t i o n  of 
Ea. ( 2 0 )  f o r  measu remnt r  o f  i n  tba b e a t  
t i c a t a b l e  aluminum allay 7075. 
A1  7075 were rubjected to  d i f f e r e n t  heat Cccs tunCs  
i n  o r d e r  to  ach ieve  vn ry ing  arountm o f  m e c d  phase 
i n  them. The r p e c i w a r  were f i r r t  r o l u t i o n  t r e a t e d  
a t  465OC f o r  a per iod  of 2 112 barrr. 
was then  quenched at O°C and all-d t o  usm rlwlt 
t o  room tea ratore. Specimen 2 wao q u e n c h d  i n  
water  at  25 C .  S p e c i w n  3 was quenched i n  b o i l i n g  
water and uas t hen  t r a n s f e r r e d  t o  a fu rnace  hea ted  
t o  100°C and allowed t o  cool slowly t o  room 
t e m  e r a t u r e .  
465 and then  quenched in water  a t  250'. ¶le 
specimen war t h e n  allowed t o  age a t  room 
t empera tu re  and t h e  n o n l i n e a r i t y  par-ter was 
measured as a f u n c t i o n  of .ling t i m e .  

lour r p c c i r n r  o f  

Specimen 1 

r 
SpeciPan 4 was s o l u t i o n  t r e a t e d  at  g 

All  epeciioens were c y l i n d r i c a i  i n  Y I I . I ~  W I  t h  M 

dianirttrr of crppruxiuiotely 2 . 5  cm and . I  I ~ ~ i g t t i  i J !  

about 5 cm. The o p p o s i t e  f aces  of t h e  ~ , J ~ C . C I I I I C ~ I I ~  

were lapped p a r a l l e l  t o  w i t h i n  41 a rc  Y V C , ) I I ~ S .  T h e  
end fdces  were po l i shed  t o  o p t i c a l  l l u t n v s s .  ' [ ' t i e  

method used i n  t h e  de t e rmina t ion  of the  
n o n l i n e a r i t y  parameter  is d e s c r i b e d  e l sewhere  . 
The measured n o n l i n e a r i t y  p a r a  8 e t c r s  were c o r r r r t r ~ d  
fo r  t h e  e f f e c t s  of a t t e n u a t i o n  . 
I n  o r d e r  t o  de t e rmine  t h e  volume f r a c t i o n  of t h e  
second phase p r e c i p i t a t e s ,  t h e  specimens were 
po l i shed  u s i n g  Alumina povder and e tched  wi th  N a O H  
s o l u t i o n .  Micrographs  were taken  and t h e  a r e a  of 
t he  second phase was de te rmined .  
pe rcen tage  of  second phase p r e s e n t  i n  che specimen 
vas then  c a l c u l a c e d .  

7 

The volume 

IV. Resu l t8  and Di scuss ion  

The r e s u l t s  of t h e  expe r imen ta l  measurements i n  
A 1  7075 of t h e  e f f e c t i v e  n o n l i n e a r i t y  parameter  i3 
as a f u n c t i o n  of volume f r a c t i o n  of second phase 
p r e c i p i t a t e s  f i s  shown i n  f i g .  1. A l e a s t  
squa res  f i t  t o  t h e  d a t a  r e s u l t s  i n  the  l i n e a r  cu rve  
g iven  by t h e  s o l i d  l i n e .  
c o e f f i c i e n t  of  t h e  cu rve  i s  1.0 which i n d i c a t e s  
p e r f e c t  agreement between t h e  l i n e a r  approxiuration 
o f  Eq. (20) and t h e  exper imenta l  d a t a .  
Mea8urements of t h e  i n t e r c e p t  and s lope  of t h e  
cu rve  y i e l d  a v a l u e  o f  6.29 for t h e  n o n l i n e a r i t y  
parameter  6 of pure  solid s o l u t i o n  of A 1  7075 and a 
va lue  of 0.12  for K. 

P 

The c o r r e l a t i o n  

D vs. Volume % of Second Phase 

c? 

18 
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y I 6.2915 + 0.7532~ f l ~ 1  .oO 
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V&m8 Fraction (Oh)  

P i s .  1 E f f e c t i v e  n o n l i n e a r i t y  parameter  o f  A1 7075 
a. a f u n c t i o n  of volume f r a c t i o n  of second 
phase.  S o l i d  cu rve  is from theory ;  point.  
are from exper iments .  

F i n a l l y ,  it vas assumed i n  t h e  mathemat ica l  model 
t h a t  t h e  number of randomly o r i e n t e d  g r a i n s  
con ta ined  w i t h i n  a p a t h l e n g t h  of t h e  p ropaga t ing  
sound vave is  s u f f i c i e n t l y  l a r g e  t o  provide  a good 
s t a t i s t i c a l  sampl ing  of q u a s i - i s o t r o p i c  behavior .  
It is expec ted  t h a t  t h e  5 cm pa th leng th  i n  t h e  
p r e s e n t  specimens a l lows  a wide v a r i a t i o n  of 
ave rage  g r a i n  s i z e  wi thout  v i o l a t i n g  t h e  q u a s i -  
i s o t r o p i c  asaumption. 
' s t a t i s t i c a l  sampl ing  would be t h e  i n v a r i a n c e  of t h e  
n o n l i n e a r i t y  parameter  as a func t ion  of g r a i n  r i r t .  
F i g u r e  2 rhous  t h e  measured n o n l i n e a r i t y  parameter r  

A m a n i f e s t a t i o n  of proper  
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